Standard Products

UT54ACTQ16374

RadHard CMOS 16-bit D Flip-Flop TTL Inputs, and Three-State Outputs
Datasheet
May 16, 2012
www.aeroflex.com/radhard

FEATURES

- 16 non-inverting D flip-flops with three-state outputs
\square Guaranteed simultaneously switching noise level and dynamic threshold performance
\square Buffered positive edge-triggered clock
\square Separate control logic for each byte
\square Guaranteed pin-to-pin output skew
- $0.6 \mu \mathrm{~m}$ Commercial RadHard ${ }^{\mathrm{TM}}$ CMOS
- Total dose: 100K rad(Si)
- Single Event Latchup immune
- SEU Onset LET >95 MeV -cm²/mg
\square High speed, low power consumption
Output source/sink 24mA
- Standard Microcircuit Drawing 5962-06245
- QML compliant part
\square Package:
- 48-lead flatpack, 25 mil pitch (. 390 x .640)

DESCRIPTION

The 16-bit wide UT54ACTQ16374 D flip-flop is built using Aeroflex's Commercial RadHard ${ }^{\text {TM }}$ epitaxial CMOS technology and is ideal for space applications. This high-speed, low power UT54ACTQ16374 D flip-flop is designed for bus oriented applications. A buffered clock (CP) and Output Enable ($\overline{\mathrm{OE}}$) are common to each byte and can be shorted together for full 16-bit operation. The UT54ACTQ16374 are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers and working registers. Each flip-flop will store the state of their indivdual D inputs (In) that meet the setup and hold requirements on the low-to-high clock (CPn) transition. With the Output Enable ($\overline{\mathrm{OE}}$) low, the contents of the flip-flops are available at the output. When $\overline{\text { OEn is high, the outputs go to high }}$ impedance state. Operation of $\overline{\text { OEn input does not affect the state }}$ of the D flip-flops.

PIN DESCRIPTION

Pin Names	Description
$\overline{\text { OEn }}$	Output Enable Input (Active Low)
CPn	Clock Pulse Input
I0-I15	Inputs
O0-O15	Outputs

LOGIC SYMBOL

PINOUTS

48-Lead Flatpack

Top View

FUNCTION TABLE

INPUTS			OUTPUT	OPERATION
OEn	CPn	In	On	
H	H	L	Z	Hold
H	H	H	Z	Hold
H	\uparrow	L	Z	Load
H	\uparrow	H	Z	Load
L	\uparrow	L	L	Data Available
L	\uparrow	H	H	Data Available
L	H	L	Qo	No change in data
L	H	H	Qo	No change in data

LOGIC DIAGRAM

BYTE 1 (0:7)
(48)

BYTE 2 (8:15)

RADIATION HARDNESS SPECIFICATIONS ${ }^{1}$

PARAMETER	LIMIT	UNITS
Total Dose	1.0 E 5	$\mathrm{rad}(\mathrm{Si})$
SEL Immune	>108	$\mathrm{MeV}-\mathrm{cm}^{2} / \mathrm{mg}$
SEU Onset LET	>95	$\mathrm{MeV}-\mathrm{cm}^{2} / \mathrm{mg}$
Neutron Fluence 2	1.0 E 14	$\mathrm{n} / \mathrm{cm}^{2}$

Notes:

1. Logic will not latchup during radiation exposure within the limits defined in the table.
2. Not tested, inherent of CMOS technology.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

SYMBOL	PARAMETER	LIMIT (Mil only)	UNITS
$\mathrm{V}_{\mathrm{I} / \mathrm{O}}$	Voltage any pin during operation	-.3 to $\mathrm{V}_{\mathrm{DD}}+.3$	V
$\mathrm{~V}_{\mathrm{DD}}$	Supply voltage	-0.3 to 6.0	V
$\mathrm{~T}_{\mathrm{STG}}$	Storage Temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum junction temperature	+175	${ }^{\circ} \mathrm{C}$
Θ_{JC}	Thermal resistance junction to case	20	${ }^{\circ} \mathrm{C} / \mathrm{W}$
I_{I}	DC input current	mA	
P_{D}	Maximum power dissipation	310	mW

Note:

1. Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, functional operation of the device at these or any other conditions beyond limits indicated in the operational sections is not recommended. Exposure to absolute maximum rating conditions for extended periods may affect device reliability and performance.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMIT	UNITS
V_{DD}	Supply voltage	4.5 to 5.5	V
$\mathrm{~V}_{\text {IN }}$	Input voltage any pin	0 to V_{DD}	V
T_{C}	Temperature range	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\text {INRISE }}$ $\mathrm{t}_{\text {INFALL }}$	$\left(\mathrm{V}_{\text {IN }}\right.$ transitioning between $\mathrm{V}_{\mathrm{IL}}(\max)$ and $\left.\mathrm{V}_{\mathrm{IH}}(\min)\right)$	20	ns

DC ELECTRICAL CHARACTERISTICS ${ }^{1}$

$\left(-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{C}}<+125^{\circ} \mathrm{C}\right)$

SYMBOL	PARAMETER	CONDITION		MIN	MAX	UNIT
$\mathrm{V}_{\text {IL }}$	Low level input voltage ${ }^{2}$	V_{DD} from 4.5 V to 5.5 V			0.8	V
V_{IH}	High level input voltage ${ }^{2}$	V_{DD} from 4.5 V to 5.5 V		2.0		V
$\mathrm{I}_{\text {IN }}$	Input leakage current ${ }^{3}$	V_{DD} from 4.5 V to 5.5 V$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}}$		-1	1	$\mu \mathrm{A}$
I_{OZ}	Three-state output leakage current	V_{DD} from 4.5 V to 5.5 V$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}}$		-10	10	$\mu \mathrm{A}$
I_{OS}	Short-circuit output current ${ }^{4,5}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}}$ V_{DD} from 4.5 V to 5.5 V		-600	600	mA
$\mathrm{V}_{\text {OL1 }}$	Low-level output voltage ${ }^{5}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A} \\ & \\ & \mathrm{~V}_{\mathrm{IN}}=2 \mathrm{~V} \text { or } 0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	-55C, 25C		0.36	V
			+125C		0.5	
			$\begin{aligned} & -55 \mathrm{C}, 25 \mathrm{C}, \\ & +125 \mathrm{C} \end{aligned}$		0.2	
$\mathrm{V}_{\text {OL2 }}$	Low-level output voltage ${ }^{5,6}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=50 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \text { or } 0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \end{aligned}$	-55C, 25C		0.8	V
			+125C		1.0	
$\mathrm{V}_{\mathrm{OH} 1}$	High-level output voltage ${ }^{5}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A} \\ & \\ & \mathrm{~V}_{\mathrm{IV}}=2 \mathrm{~V} \text { or } 0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	-55C, 25C	$\mathrm{V}_{\mathrm{DD}}-0.64$		V
			+125C	$\mathrm{V}_{\mathrm{DD}}-0.8$		
			$\begin{gathered} -55 \mathrm{C}, 25 \mathrm{C}, \\ +125 \mathrm{C} \end{gathered}$	$\mathrm{V}_{\mathrm{DD}}-0.2$		
$\mathrm{V}_{\mathrm{OH} 2}$	High-level output voltage ${ }^{5,6}$	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-50 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=2.0 \mathrm{~V} \text { or } 0.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \end{aligned}$	-55C, 25C	$\mathrm{V}_{\mathrm{DD}}-1.1$		V
			$+125 \mathrm{C}$	$\mathrm{V}_{\text {DD }}-1.3$		
$\mathrm{V}_{\text {IC }}{ }^{+}$	Positive input clamp voltage	For input under test, $\mathrm{I}_{\mathrm{IN}}=18 \mathrm{~mA}$$\mathrm{V}_{\mathrm{DD}}=0.0 \mathrm{~V}$		0.4	1.5	v
$\mathrm{V}_{\text {IC }}{ }^{-}$	Negative input clamp voltage	For input under test, $\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$$\mathrm{V}_{\mathrm{DD}}=\text { open }$		-1.5	-0.4	V

$\mathrm{P}_{\text {total }}$	Power dissipation 7,6,9	$\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$ V_{DD} from 4.5 V to 5.5 V	0.5	$\begin{aligned} & \mathrm{mW} / \\ & \mathrm{MHz} \end{aligned}$
$\mathrm{I}_{\text {DDQ }}$	Standby Supply Current $V_{\text {DD }}$ Pre-Rad $25^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}$ Post-Rad $25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \overline{\mathrm{OEn}}=\mathrm{V}_{\mathrm{DD}} \\ & \overline{\mathrm{OEn}}=\mathrm{V}_{\mathrm{DD}} \\ & \overline{\mathrm{OEn}}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$	$\begin{gathered} 10 \\ 160 \\ 160 \end{gathered}$	$\mu \mathrm{A}$
$\Delta \mathrm{I}_{\text {DDQ }}$	Quiescent Supply Current Delta, TTL input level	For input under test $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}-2.1 \mathrm{~V}$ For other inputs $\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \end{aligned}$	1.6	mA
$\mathrm{C}_{\text {IN }}$	Input capacitance ${ }^{10}$	$\begin{aligned} & f=1 \mathrm{MHz} @ 0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}} \text { from } 4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	15	pF
$\mathrm{C}_{\text {OUT }}$	Output capacitance ${ }^{10}$	$\begin{aligned} & f=1 \mathrm{MHz} @ 0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}} \text { from } 4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	15	pF
$\mathrm{V}_{\text {OLP }}$ $\mathrm{V}_{\mathrm{OLV}}$	Low level $\mathrm{V}_{\text {SS }}$ bounce noise ${ }^{11}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 1100 \\ -1300 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
$\mathrm{V}_{\mathrm{OHP}}$ $\mathrm{V}_{\mathrm{OHV}}$	High level V_{DD} bounce noise ${ }^{11}$	See figure "Quiet Output Under Test"	$\begin{gathered} \mathrm{V}_{\mathrm{OH}} \\ +1200 \\ \mathrm{~V}_{\mathrm{OH}} \\ -1400 \end{gathered}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$

Notes:

1. All specifications valid for radiation dose $\leq 1 \mathrm{E} 5 \mathrm{rad}(\mathrm{Si})$ per MIL-STD-883, Method 1019.
2. Functional tests are conducted in accordance with MIL-STD-883 with the following input test conditions: $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{min})+20 \%,-0 \% ; \mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}}(\mathrm{max})+0 \%$, 50%, as specified herein, for TTL, CMOS, or Schmitt compatible inputs. Devices may be tested using any input voltage within the above specified range, but are guaranteed to $\mathrm{V}_{\mathrm{IH}}(\mathrm{min})$ and V_{IL} (max).
3. Not more than one output may be shorted at a time for maximum duration of one second.
4. Supplied as a design limit, but not guaranteed or tested.
5. Per MIL-PRF-38535, for current density $\leq 5.0 \mathrm{E} 5 \mathrm{amps} / \mathrm{cm}^{2}$, the maximum product of load capacitance (per output buffer) times frequency should not exceed 3,765 $\mathrm{pF}-\mathrm{MHz}$.
6. Transmission driving tests are performed at $\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$, only one output loaded at a time with a duration not to exceed 2 ms . The test is guaranteed, if not tested, for $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ minimum or V_{IL} maximum.
7. Guaranteed by characterization.
8. Power does not include power contribution of any CMOS output sink current.
9. Power dissipation specified per switching output.
10.Capacitance measured for initial qualification and when design changes may affect the value. Capacitance is measured between the designated terminal and $V_{S S}$ at frequency of 1 MHz and a signal amplitude of 50 mV rms maximum.
10. This test is for qualification only. V_{SS} and V_{DD} bounce tests are performed on a non-switching (quiescent) output and are used to measure the magnitude of induced noise caused by other simultaneously switching outputs. The test is performed on a low noise bench test fixture.

AC ELECTRICAL CHARACTERISTICS ${ }^{\mathbf{1}}$

$\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%,-55^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{C}}<+125^{\circ} \mathrm{C}\right)$

SYMBOL	PARAMETER	MIN	MAX	UNIT
${ }^{\text {PLLH }}$	Propagation delay CPn to On	2	10	ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay CPn to On	2	10	ns
$\mathrm{t}_{\text {PZL }}$	Output enable time $\overline{\text { OEn }}$ to On	2	9.0	ns
$\mathrm{t}_{\mathrm{PZH}}$	Output enable time $\overline{\text { OE }}$ to On	2	9.0	ns
$\mathrm{t}_{\text {PLZ }}$	Output disable time $\overline{\text { OEn }}$ to On high impedance	2	9.0	ns
${ }^{\text {P }}$ PZ	Output disable time $\overline{\text { OEn }}$ to On high impedance	2	9.0	ns
$\mathrm{t}_{\text {FMAX }}{ }^{2}$	Maximum clock frequency		100	MHz
$\mathrm{t}_{\text {S }}$	Setup time high or low In to CPn	1.5		ns
t_{H}	Hold time high or low In from CPn	0.5		ns
t_{W}	Clock pulse, high or low CPn	5.0		ns
$\mathrm{t}_{\text {SKEW }}{ }^{3}$	Output-to-output skew		1.25	ns
$\mathrm{t}_{\text {DSKEW }}{ }^{3}$	Differential skew between outputs		1.5	ns
$\mathrm{t}_{\text {DSKEWPP }}{ }^{3,5}$	Part-to-part output skew between outputs on multiple devices under identical system conditions.		500	ps

Notes:

1. All specifications valid for radiation dose $\leq 1 \mathrm{E} 5 \mathrm{rad}(\mathrm{Si})$ per MIL-STD-883, Method 1019.
2. Verified by functional testing.
3. Output skew is defined as a comparison of any two output transitions high-to-low vs. high-to-low and low-to-high vs low-to-high.
4. Differential skew is defined as a comparison of any two output transitions high-to-low vs. low-to-high and low-to-high vs high-to low.
5. Guaranteed by characterization, but not tested.

Test Load or Equivalent ${ }^{1}$

Notes

1. Equivalent test circuit means that DUT performance will be correlated and remain guaranteed to the applicable test circuit, above, whenever a test platform change necessitates a deviation from the applicable test circuit.

Bounce Noise

Active Outputs

Quiet Outputs Under Test

Setup and Hold Measurements

PACKAGE

NOTE:

1. Seal ring is connected to V_{SS}.
2. Units are in inches.
3. All exposed metalized areas must be gold plated 100 to 225 microinches thick. Dyer electroplated nickel undercoating 100 to 350 microinches per MIL-PRF-38535.

Figure 1. 48-Lead Flatpack

ORDERING INFORMATION

UT54ACTQ16374: SMD

Notes:

1. Lead finish (A,C, or X) must be specified.
2. If an " X " is specified when ordering, part marking will match the lead finish and will be either "A" (solder) or " C " (gold).
3.Total dose radiation must be specified when ordering. QML Q not available without radiation hardening.

UT54ACTQ16374

Notes:

1. Lead finish (A, C, or X) must be specified.
2. If an " X " is specified when ordering, then the part marking will match the lead finish and will be either " A " (solder) or " C " (gold).
3. Prototype flow per Aeroflex Manufacturing Flows Document. Tested at $25^{\circ} \mathrm{C}$ only. Lead finish is Gold " C " only. Radiation neither tested nor guaranteed.
4. Military Temperature Range flow per Aeroflex Manufacturing Flows Document. Devices are tested at $-55^{\circ} \mathrm{C}$, room temp, and $125^{\circ} \mathrm{C}$. Radiation neither tested nor guaranteed.
```
Aeroflex Colorado Springso-Datasheet Definition
```

Advanced Datasheet - Product In Development
Preliminary Datasheet - Shipping Prototype
Datasheet - Shipping QML \& Reduced Hi-ReI

COLORADO

Toll Free: 800-645-8862
Fax: 719-594-8468

SE AND MID-ATLANTIC
Tel: 321-951-4164
Fax: 321-951-4254

INTERNATIONAL

Tel: 805-778-9229
Fax: 805-778-1980

WEST COAST
Tel: 949-362-2260
Fax: 949-362-2266

NORTHEAST

Tel: 603-888-3975
Fax: 603-888-4585

CENTRAL

Tel: 719-594-8017
Fax: 719-594-8468

Aeroflex Colorado Springs, Inc., reserves the right to make changes to any products and services herein at any time without notice. Consult Aeroflex or an authorized sales representative to verify that the information in this data sheet is current before using this product. Aeroflex does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by Aeroflex; nor does the purchase, lease, or use of a product or service from Aeroflex convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of Aeroflex or of third parties.
 attributes represented by these three icons: solution-minded, performance-driven and customer-focused

